Université d'Ibn Khaldoun

Faculté des Sciences de la Nature et de la Vie (Annexe de Médecine)

Matière : BIOPHYSIQUE

Rayonnement et Radioactivité

Exercice 1:

- 1. Quelle est la combinaison juste :
 - 1)Toutes les ondes électromagnétiques ne sont pas visibles par l'homme
 - 2) Dans l'effet Compton, l'électron peut être éjecté en arrière.
 - 3)Par définition, l'électronvolt(eV) correspond à l'énergie potentielle acquise par un électron lorsqu'il est soumis à une différence de potentiel de 1Volt.
 - 4)L'énergie d'un photon varie de façon proportionnelle par rapport à sa fréquence.
 - 5)la quantité de mouvement d'une particule matérielle varie de façon proportionnelle par rapport à sa vitesse.
 - A) 1,2,5
 - B) 1,2,3
 - C) 2,3,4
 - D) 3,4,5
- 2. Une onde électromagnétique de longueur d'onde 2480A°, se propage dans le vide avec une vitesse (en m/s) de :
 - $a)5.10^{8}$
 - b) $2,48.10^8$
 - c) 3.10^8
 - d) Toutes les réponses sont fausses.
- 3. Son énergie en Joule est :
 - a) 5.10^{-20}
 - $b)5.10^{-19}$
 - c)8.10⁻¹⁹
 - d) Toutes les réponses sont fausses.
- 4. Son énergie en eV est:
 - a) 12,4
 - b)5

- c)24,48
- d) Toutes les réponses sont fausses.
- 5. Quelle radiation électromagnétique a la plus forte fréquence et énergie :
 - A. Les rayons X
 - B. Les rayons gamma
 - C. les micro-ondes
 - D. le rayonnement ultraviolet
- 6. Le nombre de neutrons dans un atome peut être déterminé en :
 - A. ajoutant le nombre de masse au numéro atomique
 - B. soustrayant le nombre de masse du numéro atomique
 - C. soustrayant le numéro atomique au nombre de masse
 - D. ajoutant le nombre de protons au nombre d'électrons
- 7. Comment peut-on différencier les différents isotopes d'un même élément?
 - A. par le nombre de masse
 - B. par le numéro atomique
 - C. par le nombre de protons
 - D. par le nombre d'électrons
- 8. Un isotope du polonium a 128 neutrons.

Tous les isotopes du polonium devraient avoir :

- A. 84 protons
- B. 128 protons
- C. 84 neutrons
- D. 128 neutrons
- 9. Combien y a-t-il de protons, neutrons et électrons dans le calcium-42?
 - A. 20 protons, 22 neutrons, 20 électrons
 - B. 20 protons, 20 neutrons, 22 électrons
 - C. 22 protons, 22 neutrons, 20 électrons
 - D. 22 protons, 20 neutrons, 20 électrons
- 10. Donne la définition des termes suivants :
 - a) demi-vie:
 - b) courbe de désintégration :
 - c) isotope père :
 - d) isotope fils:
- 11. Relie les découvertes avec le scientifique concerné :

A découvert les rayons X I	I Marie Curie
A découvert le polonium et le radium I	I Henri Becquerel
A identifié les rayonnements alpha, I beta, gamma	I Ernest Rutherford
A découvert le noyau de l'atome I	I Wilhem Roentgen

12. La datation au carbone peut être utilisée pour déterminer l'âge :

I.	Un échantillon minéral
II.	Un fossile végétal
III.	Un squelette animal

- A. I et II seulement
- B. I et III seulement
- C. II et III seulement
- D. I, II et III

Exercice 2:

On considère la famille radioactive dont le nucléaire père est l'Uranium $^{238}_{92}U$ et le nucléaire final stable , le plomb $^{206}_{82}Pb$.

Le radium $^{226}_{88}Ra$ est un nucléide de cette famille qui, à la suite de désintégration de type α et de type β -conduit au plomb 206.

Quels sont les nombres de désintégrations de type de type α et β^- permettant de passer du noyaux $^{226}_{88}Ra$ au noyau $^{206}_{82}Pb$

Exercice 3:

Un échantillon contient 10^{12} noyaux radioactifs de ^{206}Tl (Thallium) de cte radioactive $2.7.10^{-3}$ s⁻¹

- a) Calculer le nombre de noyaux de ²⁰⁶Tl après 10minutes
- b) En déduire le nombre de noyaux désintégrés

Exercice 4:

Un échantillon contient 5mg du ¹⁴C de cte radioactive 1,21.10⁻⁴ans

- a) Calculer le nombre de noyaux de carbone présents dans l'échantillon.
- b) En déduire le nombre des noyaux désintégrés après 1000ans. On donne $1u=1,66.10^{-27} \text{Kg}$

Exercice 5:

La constante radioactive de ⁷Be(Béryllium) est 1,3.10⁻² jours⁻¹

Déterminer après combien de temps

- a) Le nombre de ⁷Be présents dans l'échantillon se réduit au tiers
- b) Le nombre de ⁷Be désintégrés est le tiers du nombre de noyaux de ⁷Be initialement présent dans l'échantillon

Exercice 6:

Calculer l'activité moyenne d'un échantillon qui produit 5.10¹⁵ désintégrations pendant 3heures.

Exercice 7:

Calculer l'activité d'un échantillon contenant 10^{26} noyaux radioactifs de cte radioactive $2.10^{-2}\,h^{-1}$

Exercice 8:

Calculer le nombre de noyaux présents dans un échantillon qui a une activité 1000Bq, et de cte radioactive 0 ;1 min⁻¹

Exercice 9:

La constante radioactive d'un noyau est 5.10⁻²min⁻¹

- a) Calculer T
- b) Le nombre de noyau qui se trouve dans un échantillon à t=5T est 2.10^{20} Calculer le nombre de noyaux présents à $t_0=0$

Exercice 10:

Un échantillon contient à t₀=0, 14g de ⁷Be(Béryllium) de période 53,4 jours.

a) Déterminer l'activité de l'échantillon

b) Calculer le nombre de noyaux désintégrés à t=2min, on donne $N_A=6.10^{23}$.

Exercice 11.

Un laboratoire reçoit un échantillon de 1mg de cadmium $^{107}_{48}Cd$ radioactif, de demi-vie T=6h42min. Il se désintègre en $^{107}_{44}Ag$ avec émission d'une particule chargée.

- 1. Ecrire l'équation de désintégration sachant que la désintégration de cadmium s'accompagne de l'émission d'un rayonnement. De quel type de radioactivité s'agit-il ? Expliquer le rayonnement émis.
- 2. Définir la constante radioactive et calculer sa valeur.
- 3. Calculer le nombre Node noyaux présents au moment de la réception de l'échantillon
- 4. a) Donner l'expression de l'activité à la date t d'un échantillon radioactif contenant N(t) noyaux.
 - b) Calculer l'activité de cet échantillon étudié à la date t=0
 - c) calculer la durée au bout de laquelle l'activité aura diminué des trois quarts